
Random walk on self-avoiding walk in external bias: diffusion, drift and trapping

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 L761

(http://iopscience.iop.org/0305-4470/18/13/006)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 08:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) L761-L766. Rinted in Great Britain 

LEITER TO THE EDITOR 

Random walk on self-avoiding walk in external bias: diffusion, 
drift and trapping 

Debashish Chowdhuryt 
Institut fur Theoretische Physik, Universitat zu Koln, Zulpicher Strasse 77, D-5000 Koln 
41, West Germany 

Received 17 June 1985 

Abstract. The effect of external bias on random walks (RWS) on self-avoiding walks (on 
square lattices) in the presence of ‘bridges’ is studied by Monte Carlo simulation. The 
qualitative as well as quantitative feaures of the latter problem are compared and contrasted 
with those of RWS on percolation clusters in the presence of external bias. 

Recently the phenomenon of random walks (RWS) on statistical fractals, e.g., on the 
percolation clusters (PCS) (see, e.g., Stauffer 1985a for a review) and on self-avoiding 
walks (SAWS) (Helman et a1 1984, Ball and Cates 1984, Chowdhury 1985, Yang et a1 
1985, Chowdhury and Chakrabarti 1985, from now on the latter work will be referred 
to as I), have been studied intensively. The non-triviality of the latter problem arises 
from the hoppings across the so-called bridges (see I for the details). What happens 
when an external biasing field is imposed? Suppose, bias B = 0 and B = 1 (in dimension- 
less units) correspond, respectively, to the completely unbiased and completely biased 
situations. The mean square end-to-end distance of a RW after ‘time’ t will be denoted 
by (R?). In the case of RWS on PCS above percolation threshold the following features 
have emerged. 

(i) For a given non-zero finite (not too large) bias B, a crossover from diffusive to 
drift-like motion takes place at a value t,, of time (Pandey 1984). 

(ii) t,, is a decreasing function of the biasing field B (Pandey 1984). 
(iii) For a given t, ( R : )  is a non-monotonic function of B, a maximum occurs at 

an intermediate value of B (Barma and Dhar 1983, Pandey 1984). 
(iv) For a given B, the component of the end-to-end distance parallel to the bias 

increases linearly with time (Seifert 1984) for sufficiently large t. 
(v) For a given B, the component of the end-to-end distance perpendicular to the 

bias increases as t”* with time (Seifert 1984) for sufficiently large t. 
(vi) At B = 1, (R:) is independent of t, the latter effect is a consequence of the 

creation of traps by the field (Bottger and Bryksin 1982, Barma and Dhar 1983, Pandey 
1984, Seifert and Suessenbach 1984, Stauffer 1985b). The traps arise from the fact that 
moving out of the ‘dead-end branches’ and the ‘cages’ in the PC may require motion 
against the field. 
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However, what remains controversial is the possibility of drift even in the presence 
of finite, but large, non-zero values of B (Dhar 1984, Stauffer 1985b, Ohtsuki 1982, 
White and Barma 1984, Gefen and Goldhirsch 1985). Our main aim in this letter is 
to study the effect of an external biasing field on the mean square end-to-end distance, 
(R:), of a t-step RW on a longer SAW, because ‘cages’, similar to those leading to 
trapping on PC, occur also on SAWS. However, the most remarkable difference between 
the two problems is the absence of ‘dead-end branches’ on a SAW. Fortunately, this 
difference can be indirectly utilised to compare and contrast the roles played by the 
‘cages’ and the ‘dead-end branches’ in the case of RWS on PCS. 

In I we assumed the random walker to be a ‘myopic ant’ (Mitescu and Roussenq 
1983); the time step in such a walk does not increase if the next host site chosen by 
the ant is inaccessible. In the present work we shall assume the walker to be a ‘blind 
ant’; the time step is increased even if the attempt for a step is unsuccessful. In case 
of RW on PC, both the ‘myopic ant’ and the ‘blind ant’ lead to the same critical behaviour 
(see, e.g., Seifert and Suessenbach 1984). Our present choice of the ant is motivated 
by our aim of studying the trapping of the ant (the distance traversed by the ant must 
not increase with the increase of time, at least over a sufficiently large time interval, 
if it is trapped). A myopic ant is not suitable for the latter purpose because, when 
trapped, both the distance and time do not increase further. We shall also show in 
this letter that in the absence of an external biasing field the critical behaviour of the 
RW of a blind ant on SAW is identical with that of a myopic ant. 

We have generated SAWS of lengths N = 55 (in a CDC Cyber 72 scalar computer), 
N = 75 and N = 90 (in a CDC Cyber 176 scalar computer) on square lattices by Monte 
Carlo simulation as described in I. About 16 seconds of CPU time was required to 
generate a SAW of N = 75 and about 80 seconds of CPU time for a SAW of N = 90 in 
the CDC 176 computer by our algorithm. We verified that the mean square end-to-end 
distance exponent for these SAWS is 0.75. An ant is placed on an arbitrary site on a 
SAW and the magnitude and direction of the field B (OS B S 1) are specified as in 
Pandey (1984). Suppose B is applied along the south. Now a random fraction between 
zero and unity is called. The next position of the ant is chosen in the following way. 

(i) If the random fraction is less than B the nearest neighbour on the south of the 
current site is investigated and the time is increased by unity. If the site so chosen lies 
on the SAW the ant moves there, otherwise it stays at its old position and a new random 
fraction is called. 

(ii) If the random fraction is larger than B, each of the four directions are equally 
probable and one of these is chosen randomly for investigation by calling another 
random number, then the time is increased by unity and the ant moves as above. The 
end-to-end distance after a given interval of time t is measured by following the same 
procedure as described in I. A large number of configurations (more than 30 000) for 
each t and B were generated by varying the initial position of the ant on a given SAW 

and by generating RWS on different SAWS. Less than one microsecond of CPU time was 
required for each step of the RW. Notice that most of the computer time goes in 
producing the SAWS. The square of the end-to-end distance of a t-step RW for a given 
B was averaged over all these configurations to get (R;).  The procedure was repeated 
for various values of t and B. Let us denote the components of the end-to-end distance 
of a RW parallel and perpendicular to the biasing field by R! and R: respectively. We 
have also computed the averages (IR!l) and (IRfI)  for the same configurations generated 
for the computation of the mean square average of the end-to-end distance. The 
following features emerge. 
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(i) In the absence of biasing field, the mean square end-to-end distance of t-step 
RWS on SAWS (the SAW is much longer than the RW) is given by 

(R: )X  t k  

where k t 0 . 7 2 ,  in agreement with our earlier observation (see I) using myopic ant. 
Thus, in the absence of biasing field, the critical behaviour of RWS on SAWS is identical 
for both myopic as well as blind ants. The latter feature is qualitatively similar to that 
observed in the case of RWS on PCS (Mitescu and Roussenq 1983). Moreover, the 
numerical value k = 0.72 is smaller than the corresponding value (k = 0.75) computed 
by Yang et al (1985) from exact enumeration of RWS on SAWS generated by Monte 
Carlo simulation. If Yang et al's observation were correct it would mean that the 
hoppings across the bridges have no effect on the critical behaviour of RWS on SAWS. 

But our observation here disagrees with Yang et al's claim, thereby providing further 
support to our earlier argument (Chowdhury 1985 and I) that the hopping across the 
bridges has a non-trivial effect on the critical behaviour. 

(ii) The slope of each of the (R:)  against t curves (see figures 1 and 2) starts 
decreasing beyond a certain value t,,, and finally vanishes at large t. The flattening 
of the curves in figures l ( a )  and l ( b )  for large t is a consequence of the fact that as 
t increases all the sites on the SAW are likely to be visited. Our subsequent discussion 
will be confined to times t << t,,,. In other words, we shall assume that the end-to-end 
distance of the RW is much smaller than that of the SAWS. 
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Figure 1. Log-log plots of mean square end-to-end distances (R:) of RWS against t on 
SAWS of length (a)  N = 55, and ( b )  N = 75 for various values of the biasing field B (x, 
0;  0, 0.25; A, 0.50; 0, 0.75; W, 0.90; A, 0.95; 0, 0.98; +, 0.99; @, 1.00). The symbol V 
in ( b )  corresponds to RWS on SAWS of length N = 90 for B = 0.98. 
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Bias 

Figure 2. Mean square end-to-end distances ( R : )  of RWS plotted against the biasing field 
B on SAWS of length ( a )  N = 55, and ( b )  N = 75. 

(iii) For a given non-zero finite field B, a crossover to a new critical behaviour 
takes place at t = t,, (see figures l ( a )  and l(6)).  Notice that the curves for various 
values of the field are parallel to each other at long times with the slopes approximately 
0.67. The latter value of the exponent indicates that, possibly, anomalous diffusion 
(Gefen et a1 1983) dominates on long time scale. However, because of the limited 
observation time (t<5000) in our simulation we cannot completely rule out the 
possibility of truly drift-like (or some other) critical behaviour after sufficiently long 
time on extremely long SAWS. Although the upward turn of the curves beyond t,, is 
common for both RW on PC and RW on SAWS there are quantitative differences. Our 
curves for RWS on SAWS clearly indicate a new power law behaviour for longer times 
( t  > tcr); the corresponding curves for RW on PC, at least for large bias (>0.98), appear 
more complicated (Pandey 1984, Seifert and Suessenbach 1984, Stauffer 1985b). Dhar 
(1984) argued that in the presence of strong fields the root-mean-square displacement 
varies as tu, where a (a < 1) is a non-universal field-dependent exponent. On the 
other hand, in the case of RW on SAWS we find roughly the same power law behaviour 
with field-independent exponent for all finite fields. 

(iv) The time t,, at which the crossover takes place is, however, clearly a decreasing 
function of the field B. This feature is also similar to that observed in case of RW on 
PC (Pandey 1984, Barma and Dhar 1983). 

(v) In an infinitely large field ( B  = 1) (R:)  is independent of t (for all 10 < t < 5000) 
thereby signalling trapping of the ant in the cages. However, no trapping of ants on 
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SAWS is possible for any finite values of the field. On the other hand, on PC there are 
dead-end branches, in addition to the cages. If one is allowed to push the analogy 
between diffusion on SAWS and that on PC too far, one would expect that only the 
dead-end branches in the PC can give rise to trapping for finite B on the PC, if at all; 
the ‘cages’ being insufficient for trapping at finite B. This conjecture is in agreement 
with the earlier observations on RW on PC (Pandey 1984, Barma and Dhar 1983). 
Besides, most of the recent studies of biased RW on PC (Dhar 1984, White and Barma 
1984, Gefen and Goldhirsch 1985) focus attention on the role of dead-end branches 
in trapping. 

(vi) When observed for a fixed value of r, (R:)  is a non-monotonic function of the 
bias B, as shown in figures 2(a )  and 2 ( b ) .  A small bias pushes the ant forward thereby 
increasing its end-to-end distance for a given t. However beyond a certain value of B 
(approximately 0.5 for the square lattice) the ant finds it increasingly difficult to come 
out of the cages and consequently the end-to-end distance for given t decreases. This 
behaviour is also very similar to that observed in the case of RW on PC (Pandey 1984, 
Barma and Dhar 1983). Unfortunately, it has not been possible to decide conclusively 
on the nature of the asymptotic dependence of the rise (and the subsequent fall) of 
(R:)  with B. 

(vii) The t-dependence of (lR!l) is qualitatively similar to that of ( R ~ ) ” ’ .  Analogous 
features have also been observed in the case of RWS on SAWS (Seifert 1984). 

(viii) The t-dependence of (IRfI) is, however, more complicated. The effective 
exponent seems to be approximately unity for sufficiently large, but finite, bias. This, 
however, is in sharp contrast with the corresponding result for RW on PC (Seifert 1984). 
Besides, it is hard to justify the value of the exponent physically. We cannot rule out 
the possibility of a smaller value of the exponent in the large t limit. 

Finally, we have reported here some universal features of RWS on SAWS in two 
dimensions using Monte Carlo simulation. The SAWS are rather short; the longest 
SAWS simulated are of length N = 90. However, simulation of longer RWS on much longer 
SAWS using a more efficient algorithm will be reported in a future publication. 

I thank D Stauffer, B K Chakrabarti and J Kertesz for many useful discussions, 
suggestions and comments. I am indebted to D Stauffer for a critical reading of the 
manuscript. 
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